Estimating Entropy Rates with Bayesian Confidence Intervals
نویسندگان
چکیده
The entropy rate quantifies the amount of uncertainty or disorder produced by any dynamical system. In a spiking neuron, this uncertainty translates into the amount of information potentially encoded and thus the subject of intense theoretical and experimental investigation. Estimating this quantity in observed, experimental data is difficult and requires a judicious selection of probabilistic models, balancing between two opposing biases. We use a model weighting principle originally developed for lossless data compression, following the minimum description length principle. This weighting yields a direct estimator of the entropy rate, which, compared to existing methods, exhibits significantly less bias and converges faster in simulation. With Monte Carlo techinques, we estimate a Bayesian confidence interval for the entropy rate. In related work, we apply these ideas to estimate the information rates between sensory stimuli and neural responses in experimental data (Shlens, Kennel, Abarbanel, & Chichilnisky, in preparation).
منابع مشابه
Estimating Information Rates with Confidence Intervals in Neural Spike Trains
Information theory provides a natural set of statistics to quantify the amount of knowledge a neuron conveys about a stimulus. A related work (Kennel, Shlens, Abarbanel, & Chichilnisky, 2005) demonstrated how to reliably estimate, with a Bayesian confidence interval, the entropy rate from a discrete, observed time series. We extend this method to measure the rate of novel information that a neu...
متن کاملClassical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملInference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution
In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...
متن کاملBayesian procedures for the estimation of mutation rates from fluctuation experiments.
Bayesian procedures are developed for estimating mutation rates from fluctuation experiments. Three Bayesian point estimators are compared with four traditional ones using the results of 10,000 simulated experiments. The Bayesian estimators were found to be at least as efficient as the best of the previously known estimators. The best Bayesian estimator is one that uses (1/m2) as the prior prob...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 17 7 شماره
صفحات -
تاریخ انتشار 2005